第十一章 化学动力学基础(一)

一、选择题	
1. 关于反应级数,说法正确的是:	()
(A) 只有基元反应的级数是正整数;	(B) 反应级数不会小于零;
(C) 催化剂不会改变反应级数;	(D) 反应级数都可以通过实验确定 。
2. 关于反应速率 r, 表达不正确的是	()
(A) 与体系的大小无关而与浓度大小有关	; (B) 与各物质浓度标度选择有关;
(C) 可为正值也可为负值;	(D) 与反应方程式写法无关 。
3. 进行反应A+2D→3G在 298K及 2dm³容器	中进行, 若某时刻反应进度随时间变化率为 0.3
mol • s ⁻¹ ,则此时G的生成速率为(单位: m	ol • dm $^{-3}$ • s $^{-1}$) :
(A) 0.15 ; (B) 0.9 ;	(C) 0.45; (D) 0.2 •
4. 基元反应体系 aA + dD→ gG 的速率表达:	式中,不正确的是: ()
(A) $-d[A]/dt = k_A[A]^a[D]d$;	(B) $-d[D]/dt = k_D[A]^a[D]^d$;
(C) $d[G]/dt = k_G[G]^g$;	(D) $d[G]/dt = k_G[A]^a[D]^d$ o
5. 某一基元反应, 2A(g) + B(g) → E(g),	将 2mol 的 A 与 1mol 的 B 放入 1 升容器中混
合并反应,那么反应物消耗一半时的反应;	速率与反应起始速率间的比值是: ()
(A) $1 : 2$; (B) $1 : 4$; (C)) $1:6$; (D) $1:8$ °
6. 反应 3O ₂ →2O ₃ ,其速率方程 -d[O ₂]/dt =	: k[O ₃] ² [O ₂] 或 d[O ₃]/dt = k'[O ₃] ₂ [O ₂],那么k与
k'的关系是:	()
(A) $2k = 3k'$; (B) $k = k'$;	(C) $3k = 2k'$; (D) $k = 2k'$
7. 某反应, 其半衰期与起始浓度成反比, 则	J反应完成 87.5%的时间t ₁ 与反应完成 50%
的时间 t_2 之间的关系是:	()
(A) $t_1 = 2t_2$; (B) $t_1 = 4t_2$;	(C) $t_1 = 7t_2$; (D) $t_1 = 5t_2$ \circ
8. 某反应只有一种反应物, 其转化率达到 7.	5%的时间是转化率达到50%的时间的两
倍,反应转化率达到64%的时间是转化率	达到 x%的时间的两倍,则 x 为: ()
(A) 32; (B) 36;	(C) 40 ; (D) 60 °
9. 有相同初始浓度的反应物在相同的温度下	下,经一级反应时,半衰期为 $t_{1/2}$;若经二级反
9. 有相同初始浓度的反应物在相同的温度下应,其半衰期为 $t_{1/2}$ ',那么:	下,经一级反应时,半衰期为t _{1/2} ; 若经二级反 ()
应, 其半衰期为t _{1/2} ', 那么:	
应,其半衰期为 $t_{1/2}$ ',那么: (A) $t_{1/2} = t_{1/2}$ '; (B) $t_{1/2} > t_{1/2}$ '; (C)	()
应,其半衰期为t _{1/2} ',那么: (A) t _{1/2} = t _{1/2} '; (B) t _{1/2} > t _{1/2} '; (C) 10. 某一气相反应在 500℃下进行,起始压强衰期为 20 秒,其速率常数为:	()) $t_{1/2} < t_{1/2}$ '; (D) 两者大小无法确定。 员为 p 时,半衰期为 2 秒;起始压强为 0.1p 时半
应,其半衰期为t _{1/2} ',那么: (A) t _{1/2} = t _{1/2} '; (B) t _{1/2} > t _{1/2} '; (C) 10. 某一气相反应在 500℃下进行,起始压强	()) $t_{1/2} < t_{1/2}$ '; (D) 两者大小无法确定。 员为 p 时,半衰期为 2 秒;起始压强为 0.1p 时半

11. 某化合物与水相作用 后为 0.25 mol·dm ⁻³ 。		l mol•dm ⁻³ ,1 小时后	方为 0.5 mol·dm ⁻³ , 2 小时 ()
(A) 0;	(B) 1;	(C) 2;	(D) 3 °
12. 某反应速率常数k = 反应半衰期为: (A) 43.29 s;			度为 1.0 mol·dm ⁻³ ,则其 () O) 21.65 s 。
13. 某反应完成 50%的时 (A) 二级反应; (I			1/16,该反应是: () (D) 0级反应。
14. 某反应速率常数k为 半衰期t ^{1/2} 与反应物起始 (A) 2t _{1/2} = t _{1/2} '; (I	始浓度为 2 mol ∙ dm ⁻	时的半衰期t1/2'的关	
15. 某反应进行时,反应何关系? (A) 无关; (B)			衰期与反应物最初浓度有 () 平方成反比 。
16. 反应 A+B → C+; (A) 是二分子反应; (C) 不是二分子反应	(B) 是	[A][B] ,则反应: 二级反应但不一定是三 对 A、B 各为一级的:	
17. 对自由基反应A + B 能是 210 kJ • mol ⁻¹ , 用 (A) 10.5 kJ • mol ⁻¹ ; (C) 153kJ • mol ⁻¹ ;	『么逆向反应的活化的 (B)		-90kJ•mol ⁻¹ , B—C的键
18. 某反应的活化能是3 百分数约为: (A) 4.5%;			IK, 反应速率常数增加的 () (D) 50%。
	反应的活化能是逆反 <i>[</i> kJ•mol ⁻¹):	应活化能的 2 倍,反应	应时吸热 120 kJ⋅mol ⁻¹ ,
N_2O_2 + O_2 = 2 总包反应对 O_2 是	O ₂ (达到平德 NO ₂ (慢,速率 级; 对 NO -	常数为 k ₂) 是级。	为r=k[V ³⁺][Cu ²⁺],由此可
\mathbb{C}^{2+} 在反应中起			

$3.$ 采用 32 P标记的五氯化磷 $t_{1/2}$ 为14.3 d, 经d后, 放射性衰变到起始值的1/1000。
4.N ₂ 和H ₂ 合成NH ₃ , 在400℃下, 动力学实验测定结果表明没有催化剂时,其活化能为 334.9 kJ • mol^{-1} ,用Fe催化时,活化能降至167.4 kJ • mol^{-1} 。假定催化和非催化反应的指前因子相等,则两种情况下,反应速率常数之比值: $kcat/k_0$) =。
5. ⁶⁰ Co广泛用于癌症治疗, 其半衰期为5.26 a (年), 则其蜕变速率常数为:, 某医院购得该同位素20 mg, 10 a后剩余 mg。
6.反应 2N ₂ O ₅ → 4NO ₂ + O ₂ 在328 K时,O ₂ (g)的生成速率为0.75×10 ⁻⁴ mol·dm ⁻³ ·s ⁻¹ 。 如其间任一中间物浓度极低,难以测出,则该反应的总包反应速率为mol·dm ⁻³ ·s ⁻¹ N ₂ O ₅ 之消耗速率为mol·dm ⁻³ ·s ⁻¹ , NO2之生成速率为mol·dm ⁻³ ·s ⁻¹
7.某反应,其速率常数 k (在313 K—473 K范围内)与温度T关系如下: $k / s^{-1} = 1.58 \times 10^{15} \exp(-128.9 \text{ kJ} \cdot \text{mol}^{-1} / \text{RT}),$ 则该反应的级数为
8.N ₂ O ₅ 分解反应 $2N_2O_5 \rightarrow 4NO_2+O_2$ 在T, p一定时, 测得 $d[O_2]/dt = (1.5 \times 10-4 \text{ s}^{-1})[N_2O_5]$, 反应单向进行基本能完全, 则该反应的半衰期 $t_{1/2} = $ s。
9.某反应物的转化率分别达到 50%,75%,87.5% 所需时间分别为 t ,2t ,3t ,则反应对此物质的级数为。
10.O3分解反应为 2O ₃ →3O ₂ ,在一定温度下, 2.0 dm³容器中反应。 实验测出O ₃ 每秒消耗 1.50×10 ⁻² mol,则反应速率为mol • dm ⁻³ • s ⁻¹ 氧的生成速率为mol • dm ⁻³ • s ⁻¹ , dx /dt为mol • dm-3 • s-1。
11.在300 K时,鲜牛奶5 h后即变酸,但在275 K的冰箱里,可保存50 h,牛奶变酸反应的活化能是。
12.对于平行反应,一般地说: Ea值小的反应, k值随T变化率, 升温对Ea值的反应 影响更大。
13.平行反应的总速率是所有平行发生的反应速率的。其决速步是平行反应中反应速率最(填快,慢)的一个。
三、证明题
 气相反应 H₂ + Cl₂ → HCl 的机理为

$$E = \frac{k_1 E_1 + k_2 E_2}{k_2 + k_1 E_2}$$

 $E = \frac{k_1 E_1 + k_2 E_2}{k_1 + k_2}$

2.对于两平行反应:

3.对于 1/2 级反应 A → 产物,证明

$$c_{A,0}^{1/2} - c_{A}^{1/2} = \frac{k}{2}t$$

$$t_{1/2} = \frac{\sqrt{2}}{k} (\sqrt{2} - 1) \epsilon_{A,0}^{1/2}$$

4. 稀溶液的电导比例于离子浓度,因而产生离子的反应可通过电导测定来确定反应的进程。 叔戊基碘在乙醇水溶液中的水解反应

$$t - C_5H_{11}I + H_2O \rightarrow t - C_5H_{11}OH + H^+ + I^-$$

为一级反应。现此反应在电导池中进行,由于反应不断产生 $\mathbf{H}^{\bullet \star \mathbf{n} \mathbf{r}}$,因而溶液电导G不断随时间t而增大。

$$\begin{array}{ccc} (1) & c_0 & \infty \left(G_w - G_0 \right), & c_0 - c & \infty \left(G - G_0 \right) \\ \\ (2) & \ln \frac{G_w - G_0}{G_w - G} = kt \end{array}$$

- 5. $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ 为一级连串反应,试证明若 $k_1 >> k_2$,则C的生成速率决定于 k_2 ,若 $k_2 >> k_1$,则C的生成速率决定于 k_1 ,即最慢的步骤是生成C 的速率控制步骤。
- 6. 反应2C₂H₆+H₂ → 2C₂H₄ 的机理如下:

$$C_2H_6 \longrightarrow 2CH_3 \cdot$$
 $CH_3 \cdot +H_2 \longrightarrow CH_4 + H \cdot$
 $H \cdot + C_2H_6 \longrightarrow CH_4 + CH_3 \cdot$

设第一个反应达到平衡,平衡常数为K; 设H•处于恒稳态, 试证明:

$$\frac{d[CH_4]}{dt} = 2k_1 K^{1/2} [C_2 H_6]^{1/2} [H_2]$$

四、计算题

- 1. 反应 $SO_2Cl_2(g) \to SO_2(g) + Cl_2(g)$ 为一级气相反应, $320 \, ^{\circ}$ C, $k = 2.2 \times 10^{-5} \, \text{s}^{-1}$ 问在 $320 \, ^{\circ}$ C加热 $90 \, \text{min} \, \frac{SO_2Cl_2}{2}$ 的分解分数为若干?
- 2. 某一级反应,反应进行 10 min 后,反应物反应掉 30%。问反应掉 50%需多少时间?
- 3. 偶氮甲烷分解反应

 $CH_3NNCH_3(g) \rightarrow C_2H_6(g) + N_2(g)$

为一级反应。287 ℃时,一密闭容器中 ^{CH}₃NNCH₃(g) 初始压力为 21.332 kPa,1000 s后总压为 22.732 kPa,求 ^k及 ^t tp 。

- 4. 某一级反应 $\mathbb{A} \to \mathbb{P}$ 物,初始速率为 $1 \times 10^{-3} \text{ mol} \cdot \text{dm}^{-1} \cdot \text{min}^{-1}$, 1 h后速率为 $0.25 \times 10^{-3} \text{ mol} \cdot \text{dm}^{-1} \cdot \text{min}^{-1}$ 。 求 $k_{*}\ell_{1/2}$ 和初始浓度 $e^{-k_{*}\ell_{1/2}}$ 和初始浓度
- 5. 反应 $\mathbf{A} + 2\mathbf{B} \rightarrow \mathbf{D}$ 的速率方程为 $-\frac{\mathbf{d}c_{\mathbf{A}}}{\mathbf{d}t} = kc_{\mathbf{A}}c_{\mathbf{B}}$, 25 ℃时 $k = 2 \times 10^{-4} \text{ dm}^3 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$.
- (1) 若初始溶度 $c_{A,0} = 0.02 \,\text{mol} \cdot \text{dm}^{-3}$, $c_{B,0} = 0.04 \,\text{mol} \cdot \text{dm}^{-3}$, $求 t_{1/2}$.
- (2) 若将反应物A与B的挥发性固体装入5 **dm** ³ 密闭容器中,已知 25 ℃时A和B的饱和蒸气压分别为 10 kPa和 2 kPa,问 25 ℃时 0.5 mol A转化为产物需多长时间?
- 6. 65 °C时 N₂O₅ 气相分解的速率常数为 0.292 min ⁻¹, 活化能为 103.3 kJ · mol ⁻¹, 求 80 °C 时的k及 ^ℓN₂。
- 7. 反应 $\mathbb{A} + 2\mathbb{B} \rightarrow \mathbb{D}$ 的速率方程为

$$-\frac{dc_A}{dt} = kc_A^{0.5}c_B^{1.5}$$

- (2) 初始浓度同上,恒温 400 K下反应 20 s后, $c_A = 0.003918 \,\text{mol} \cdot \text{dm}^{-3}$,求活化能。
- 8. 两种等浓度的物质 A、B 混合反应, 1 h 后 A 反应掉 25%。试问 2 h 后 A 还剩多少? 若: (1) 反应对 A 为一级,对 B 为零级; (2) 对 A、B 均为一级; (3) 对 A、B 均为零级。
- 9.在水溶液中, 2-硝基丙烷与碱作用为二级反应, 其速率系数与温度关系为

$$\lg(k/dm^3 \cdot mol^{-1} \cdot min^{-1}) = 11.90 - 3163/(T/K)$$

已知两个反应物初始浓度均为800X 10⁻³mol •dm⁻³,试求在15 min 内使2-硝基丙烷转化率达70%的反应温度。

10.某有机化合物A 在酸的催化下发生水解反应,323 K 时,在PH=5的溶液中进行时,其半衰期为69.3 min,在pH=4 的溶液中进行时,其半衰期为6.93 min。已知在两个pH值的各自条件下, $t_{1/2}$ 均与A的初浓度无关,设反应的速率方程为

$$- dc_{A} / dt = kc_{A}^{\alpha} c_{H^{+}}^{\beta}$$

试计算: (1) α , β 的值; (2) 在323 K 时的反应速率系数k; (3) 323 K 时,在pH = 3 的水溶液中,A 水解 80%所需的时间是多少?

11.

已知气相反应
$$H_2 + Br_2 \longrightarrow 2HBr$$
 的机理为 $Br_2 \xrightarrow{k_1} 2Br \cdot$ $Br \cdot + H_2 \xrightarrow{k_2} HBr + H \cdot$ $H \cdot + Br_2 \xrightarrow{k_3} HBr + Br \cdot$ $H \cdot + HBr \xrightarrow{k_{-2}} H_2 + Br \cdot$

$$2Br \cdot \xrightarrow{k_{-1}} Br_2$$

由恒稳态处理法导得反应速率方程为

$$\frac{\mathrm{d}c_{\mathrm{HBr}}}{\mathrm{d}t} = \frac{2k_{2}(k_{1}/k_{-1})^{1/2}c_{\mathrm{H}_{2}}c_{\mathrm{Br}_{2}}^{1/2}}{1 + \left(\frac{k_{-2}}{k_{3}}\right)\frac{c_{\mathrm{HBr}}}{c_{\mathrm{Br}_{2}}}}$$

基元反应的活化能分别为: $E_1 = 189 \text{ kJ} \cdot \text{mol}^{-1}$, $E_2 = 73.6 \text{ kJ} \cdot \text{mol}^{-1}$, $E_3 = 5.0 \text{ kJ} \cdot \text{mol}^{-1}$, $E_{-2} = 5.0 \text{ kJ} \cdot \text{mol}^{-1}$, $E_{-1} = 0$ 。试计算 (1) 反应开始时复合反应的活化能; (2) HBr 大为过量时复合反应的活化能。

12. 当有碘存在作为催化剂时, 氯苯与氯在二硫化碳溶液中发生平行反应如下:

$$C_6H_5Cl + Cl_2 \longrightarrow HCl + o - C_6H_4Cl_2$$

 $C_6H_5Cl + Cl_2 \longrightarrow HCl + p - C_6H_4Cl_2$

当温度和碘的浓度一定, C_6H_5Cl 和HCl在 CS_2 溶液中的初始浓度均为0.5mol.dm⁻³时,30 min 后有15%的 C_6H_5Cl 转变为邻二氯苯,25%转变为对二氯苯,试计算两反应(二级反应)的速率系数 k_1 和 k_2 。

13.蔗糖在稀溶液中,按照下式水解:

$$C_{12}H_{22}O_{11} + H_2O \longrightarrow C_6H_{12}O_6$$
(葡萄糖)+ $C_6H_{12}O_6$ (果糖)

当温度与酸的浓度一定时,反应速率与蔗糖的浓度成正比。今有一溶液 $1dm^3$,溶液中含有0.300 mol $C_{12}H_{22}O_{11}$ 及0.1 mol HCl,在48℃时,20min 内有32%的蔗糖水解。(1) 计算反应速率系数; (2) 计算反应开始时(t=0)及20 min 时的反应速率; (3) 问40 min 后有多少蔗糖水解; (4) 若60%的蔗糖发生水解,需多少时间? (5) 反应40 min 要得到6 kg 葡萄糖,试求反应器的有效容积。

14. 射性同位素的蜕变速率符合一级反应的规律(蜕变速率与放射性同位素的数量成正比)。 ²¹⁰Po 经α 蜕变生成稳定的²⁰⁶Pb:

210
Po \longrightarrow 206 Pb+ 4 He

实验测得14d 后放射性降低了6.85%, 试求²¹⁰Po 的蜕变速率系数和半衰期, 并计算它蜕变掉90%时所需要的时间。

第十一章 化学动力学基础(一)参考答案

一、选择题

1. D; 2. C; 3. C 4. C; 5. D; 6. A; 7. C; 8.C; 9.D; 10.C; 11.B; 12.A; 13.B; 14.B; 15.B; 16.B; 17.B; 18.A; 19.B;

二、填空题

- 1. 总包反应对 O₂ 是一 级 对 NO 是 二 级
- 2. 催化剂 在决速步后
- 3. 143 d
- 4. $k(cat)/k_0 = exp\{[-E(cat)-E]/RT\}=10^{13}$
- 5. $k = 0.1318 a^{-1}$; 5.4 mg
- 6. 0.75×10^{-4} , 1.50×10^{-4} , 3.00×10^{-4}
- 7. 级数为1, $t = \ln 2 / k = 1.87 \times 104 s$
- 8. $t_{1/2} = 0.693/k = 2310 s$
- 9. 一级
- 10. 0.75×10^{-2} , 2.25×10^{-2} , 1.50×10^{-2} .
- 11. 63.1 kJ mol-1 ; ln(k2/k1) = ln(50/5) = (Ea/8.314)(1/275-1/300)
- 12. 小, 大。
- 13. 1
- 13. 加和, 快。

三 证明题

1.证:应用稳态近似法

$$\begin{split} \frac{\mathrm{d}c_{\mathrm{HCl}}}{\mathrm{d}t} &= k_2 c_{\mathrm{Cl}} c_{\mathrm{H_2}} + k_3 c_{\mathrm{H}} c_{\mathrm{Cl_2}} \\ \frac{\mathrm{d}c_{\mathrm{Cl}}}{\mathrm{d}t} &= 2 k_1 c_{\mathrm{Cl_2}} c_{\mathrm{M}} - k_2 c_{\mathrm{Cl}} c_{\mathrm{H_2}} + k_3 c_{\mathrm{H}} c_{\mathrm{Cl_2}} - 2 k_4 c_{\mathrm{Cl}}^2 c_{\mathrm{M}} = 0 \\ \frac{\mathrm{d}c_{\mathrm{H}}}{\mathrm{d}t} &= k_2 c_{\mathrm{Cl}} c_{\mathrm{H_2}} - k_3 c_{\mathrm{H}} c_{\mathrm{Cl_2}} = 0 \\ \frac{\mathrm{d}c_{\mathrm{H}}}{\mathrm{d}t} &= k_2 c_{\mathrm{Cl}} c_{\mathrm{H_2}} - k_3 c_{\mathrm{H}} c_{\mathrm{Cl_2}} = 0 \\ \\ \frac{\mathrm{d}c_{\mathrm{HCl}}}{\mathrm{d}t} &= c_{\mathrm{Cl}} = \left(\frac{k_1}{k_4}\right)^{1/2} c_{\mathrm{Cl_2}}^{1/2}, \ c_{\mathrm{H}} = \frac{k_2}{k_3} \frac{c_{\mathrm{Cl}} c_{\mathrm{H_2}}}{c_{\mathrm{Cl_2}}} = \frac{k_2}{k_3} \left(\frac{k_1}{k_4}\right)^{1/2} c_{\mathrm{H_2}} c_{\mathrm{Cl_2}}^{1/2} \\ \\ \therefore \frac{\mathrm{d}c_{\mathrm{HCl}}}{\mathrm{d}t} &= k_2 \left(\frac{k_1}{k_4}\right)^{1/2} c_{\mathrm{Cl_2}} c_{\mathrm{H_2}} + k_3 \frac{k_2}{k_3} \left(\frac{k_1}{k_4}\right)^{1/2} c_{\mathrm{H_2}} c_{\mathrm{Cl_2}}^{1/2} c_{\mathrm{Cl_2}} \\ \\ &= 2 k_2 \left(\frac{k_1}{k_4}\right)^{1/2} c_{\mathrm{H_2}} c_{\mathrm{Cl_2}}^{1/2} \end{split}$$

2.证明: 设两反应均为 n 级反应, 且指前因子相同, 则反应速率方程为

$$\begin{split} &-\frac{\mathrm{d}c_{\mathrm{A}}}{\mathrm{d}t} = (k_1 + k_2)c_{\mathrm{A}}^{\,n} = kc_{\mathrm{A}}^{\,n} \\ &k = (k_1 + k_2) \Longrightarrow A\exp\left(-\frac{E}{RT}\right) = A\left[\exp\left(-\frac{E_1}{RT}\right) + \exp\left(-\frac{E_2}{RT}\right)\right] \end{split}$$

上式对 T 求导数

$$\begin{split} &\frac{E}{RT^2} \exp\biggl(-\frac{E}{RT}\biggr) = \frac{1}{RT^2} \Biggl[E_1 \exp\biggl(-\frac{E_1}{RT}\biggr) + E_2 \, \exp\biggl(-\frac{E_2}{RT}\biggr) \Biggr] \\ &kE = k_1 E_1 + k_2 E_2 \ \ \Rightarrow E = \frac{k_1 E_1 + k_2 E_2}{k} \end{split}$$

3.证: n 级反应的积分公式

$$\frac{1}{n-1} \left(\frac{1}{c_A^{n-1}} - \frac{1}{c_{A,0}^{n-1}} \right) = kt, \, \, \, \, ?n = \frac{1}{2}, \, \, \, \, \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, \, \, \, | \, \, \, \, \, \, \, | \, \, \, \, \, \, \, | \, \, \, \, \, \, \, \, | \, \, \, \, \, \, \, | \, \, \, \, \, \, \, | \, \, \, \, \, \, \, | \, \, \, \, \, \, \, | \, \, \, \, \, \, \, | \, \, \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, \, | \, \, \, \, | \, \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, | \, \, \, \, | \, \, \, | \, \, \, \, | \, \, \, | \, \, \, | \, \, \, \, | \, \, \, | \, \, \, \, | \, \, \, | \, \, \, | \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, | \, \, \, \, \, | \, \, \, \, \, | \, \, \, \, \,$$

半衰期:

$$t_{1/2} = \frac{2^{n-1} - 1}{(n-1)kc_{\frac{n}{2},0}^{n-1}} = \frac{2^{-1/2} - 1}{(-1/2)kc_{\frac{n}{2},0}^{-1/2}} = \frac{\sqrt{2}}{k} (\sqrt{2} - 1)c_{\frac{n}{2},0}^{1/2}$$

证毕。

4.证: (1) 对于稀溶液,离子的摩尔电导率近似等于▲。,

$$G \otimes k = c\Lambda_{\infty}, \quad \therefore G \otimes c$$

 $t-C_5H_{11}I$ 完全水解产生的电解质 H^+,I^- 的浓度等于 $t-C_5H_{11}I$ 的初始浓度。

$$: e_0 \propto (G_{\omega} - G_0)$$
, 反应进行到 t , 生成 $\mathbf{H}^+, \mathbf{I}^-$ 的浓度为 $e_0 - e_* : e_0 - e \propto (G - G_0)$

(2) 由于是一级反应

$$\begin{split} & \ln \frac{c}{c_0} = -kt \Longrightarrow \ln \frac{c_0 - (c_0 - c)}{c_0} = \ln \frac{G_{\infty} - G}{G_{\infty} - G_0} = -kt \\ & \therefore \ln \frac{G_{\infty} - G_0}{G_{\infty} - G} = kt \end{split}$$

5

$$\mathbf{\tilde{LE}} : \quad \upsilon_{\mathbf{C}} = k_2 c_{\mathbf{B}} = k_2 \cdot \frac{c_{\mathbf{A}0} k_1}{k_2 - k_1} \left(e^{-k_1 t} - e^{-k_2 t} \right)$$

若
$$k_1 >> k_2$$
,则 $e^{-k_1 t} << e^{-k_2 t}$, $\psi_{\mathbf{c}} \approx k_2 c_{\mathbf{A} 0} e^{-k_2 t}$

即 C 的生成速率决定于 k_2 。

若
$$k_1 << k_2$$
,则 $e^{-k_1 t} >> e^{-k_2 t}$, $\upsilon_{\mathbf{C}} \approx k_1 c_{\mathbf{A} 0} e^{-k_1 t}$

即 C 的生成速率决定于 k_1 。

$$\mathbf{iE} : \frac{\left[\mathbf{CH}_3 \cdot \right]^2}{\left[\mathbf{C}_2 \mathbf{H}_6 \right]} = K$$

$$[CH_3 \cdot] = \{K[C_2H_6]\}^{1/2}$$

$$\frac{d[H \cdot]}{dt} = k_1 [CH_3 \cdot] [H_2] - k_2 [H \cdot] [C_2 H_6] = 0$$

$$\frac{d[CH_4]}{dt} = k_1[CH_3 \cdot][H_2] + k_2[H \cdot][C_2H_6] = 2k_1[CH_3 \cdot][H_2]$$
$$= 2k_1K^{1/2}[C_2H_6]^{1/2}[H_2]$$

三计算题

- 1. 11.2%)
- 2. 19.4 min.
- 3. 6.79×10^{-5} s; 1.02×10^{-4} s
- 4. 0.0433mol dm⁻³
- 5. 1.54×108s
- 6. 4.99min
- 7. 0.00526mol dm⁻³; 9.999KJ mol⁻¹
- 8. 56 %; 60%; 50%。
- 9. 298.1K)
- 10. 1; 1000dm³ mol⁻¹ min⁻¹; 1.61min
- 11. 168KJ mol⁻¹; 168KJ mol⁻¹
- 12. 0.0166dm³ mol⁻¹ min⁻¹; 0.0278 dm³ mol⁻¹ min⁻¹
- 13. 0.0193 dm³ mol⁻¹ min⁻¹;5.80×10⁻³ mol dm⁻³ min⁻¹; 3.94×10⁻³ mol dm⁻³ min⁻¹:54%;47min; 206dm³
- 14. t=454d