第三章 络合物结构

— ,	、填空题
1,	Jahn-Teller 效应的内容为。
2,	Fe(CN) ₆ ³ -的 LFSE=。
3,	铁的两种络合物: (A) Fe(CN)6, (B) Na ₃ FeF ₆ , 它们的摩尔磁化率
大	小关系为 χ_{A} χ_{B} ,它们的紫外可见光谱 d -d跃迁的波长大小关系为
$\lambda_{A_{-}}$	$_{}\lambda_{\mathrm{B}\circ}$
4,	晶体场稳定化能定义。
5、	分裂能
6,	成对能
7、	晶体场理论的主要内容
_,	、选择题
1,	下列哪个络合物的磁矩最大? -
	(A) 六氰合钴(III)离子 (B) 六氰合铁(III)离子
	(C) 六氨合钴(III)离子 (D) 六水合锰(II)离子
	(E) 六氨合钴(II)离子
2,	推测下列三种络合物的 d-d 跃迁频率大小顺序: -
	(1) 六水合铁(III) (2) 六水合铁(II) (3) 六氟合铁(II)
	(A) $v_1 > v_2 > v_3$ (B) $v_1 > v_3 > v_2$ (C) $v_3 > v_2 > v_1$
	(D) $v_3 > v_1 > v_2$ (E) $v_2 > v_1 > v_3$
3、	下列络合物的几何构型哪一个偏离正八面体最大?
	(A) 六水合铜(II) (B) 六水合钴(II) (C) 六氰合铁(III)

- (D) 六氰合镍(II) (E) 六氟合铁(III)
- 4、 单核羰基络合物 Fe(CO)5的立体构型为:
 - (A) 三角双锥 (B) 四面体 (C) 正方形
 - (D) 八面体 (E) 三角形
- 5、 四羰基镍的构型应为
 - (A)正八面体 (B)平面三角形 (C)四面体 (D)正方形

三、简答题

- 1、 第一过渡系列二价金属离子在八面体弱场作用下和在八面体强 场作用下,离子半径变化规律有何不同,简述之。
- 2、 试解释为什么d⁷~ d¹⁰组态的过渡金属原子或离子难以形成稳定的八面体配合物。

四、计算题

- 1、对于电子组态d⁴八面体过渡金属离子配合物,计算(1)分别在高低自旋时基态的能量。(2)当高低自旋的构型具有相同能量时,成对能P和晶体场分裂能 10Dq的关系。
- 2、计算 d⁶组态的晶体场稳定化能。
- 3、已知[Co(CN)₆]³⁻的分裂能为 34000cm⁻¹, 成对能为 21000cm⁻¹, 计 算其CFSE。