安徽师范大学 2007-2008 学年第一学期

2005 级物理学专业《原子物理学》期末考试试卷(B)(时间120分钟)

	题号			\equiv	四	五.	六	七	八	九	+	总 分	1
	得分												
_	L 甲学粉	,		10-34		D 1	00505	107	_1 ,		0005	E550: 10 ⁷	_1 _1
t.	中军术	· h —	6626	~ I() ⁻ -	I c	R = 1	NO 737	∨ 1()′ m	1	Q =1	nuh'/	7576* 10 ⁷ ı	m î

物理常数: $h = 6.626 \times 10^{-34} Js$, $R_{\mu} = 1.09737 \times 10^7 m^{-1}$, $R_{\mu} = 1.09677576 \times 10^7 m^{-1}$,

 $\frac{e}{m} = 1.7588 * 10^{11} C / kg$

得 分	评卷人	复核人	基皮服(复杂:八	# 10
			一、填空题(每空1分	,共 18

1、历史上证实原子核式结构的实验是_____,证实原子内部能

分)

- 量量子化的实验是____。 2、氢原子的玻尔半径是______A,基态的电离电势为 V。
- 验证实了电子的____。
- 4、电子自旋角动量量子数 S=_____, 电子自旋角动量在外场 z 方向的
- 5、碱金属原子光谱项公式中的量子数亏损,是由于______和 效应引起,而谱线的精细结构则是 的结
- 6、按泡利不相容原理,原子中。
- 7、同一电子组态,按LS耦合和jj耦合模型,均得到相同的

和。

8、原子核的放射性衰变有______三种模式,半衰期是指 1、质量为M的核俘获一质量为 m_e 的电子形成离子,该离子的黎德堡常数

9、原子弹利用了______释放的能量,而氢弹则利用的是 释放的能量。

得 分	评卷人	复核人	 松 松 田	(复版 0 八	# 10 /\`
			 间合尟	(每题 2 分,	共 10 分

- 1、核外满壳层或满次壳层电子组态形成的原子状态是什么?
- 2、简述碱金属原子与氢原子光谱项差别的原因(不考虑精细结构)。
- 3、一般光学光谱与 X 射线标识谱来源上有什么差别?
- 4、电偶极跃迁对跃迁初、终态宇称有什么要求?
- 5、Mg 原子有单重态和三重态,但3s3s3S1态并不存在,为什么?

得 分	评卷人	复核人	_
			-

三、选择题(单项选择,每小题2分,共20分)

R_{M} 与 R_{m} 的关系为:

A. $R_{M} = R_{\infty}$

B. $R_{M} = R_{\infty}(1 + m_{a}/M)$

C. $R_M = R_\infty / (1 + m_e / M)$ D. $R_M = R_\infty \cdot m_e / M$

- 2、下列各元素中最外层电子电离能最小的是:
- A. 钠原子 B. 氖原子 C. 氦原子 D. 氟原子
- 3、两个价电子的组态 pd, 利用 LS 耦合和 jj 耦合分别求出的原子态中,
- A. 状态数和能级间隔相同 B. 量子数 J 和能级间隔相同
- C. 状态数和量子数 S 相同 D. 状态数和量子数 J 相同
- 4、产生钠的两条黄谱线的跃迁是:

 $A.^{2}P_{1/2} \rightarrow ^{2}S_{1/2}$, $^{2}P_{3/2} \rightarrow ^{2}S_{1/2}$ $B.^{2}S_{1/2} \rightarrow ^{2}P_{1/2}$, $^{2}S_{1/2} \rightarrow ^{2}P_{3/2}$

- C. ${}^{2}D_{3/2} \rightarrow {}^{2}P_{1/2}$, ${}^{2}D_{3/2} \rightarrow {}^{2}P_{3/2}$ D. ${}^{2}D_{3/2} \rightarrow {}^{2}P_{1/2}$, ${}^{2}D_{3/2} \rightarrow {}^{2}P_{3/2}$
- 5、某个中性原子的电子组态是 $1s^22s^22p^63p^1$, 此原子是:
- A.处于激发态的碱金属原子 B.处于基态的碱金属原子
- C. 处于基态的碱土金属原子 D. 处于激发态的碱土金属原子
- 6、原子发射伦琴射线标识谱的条件是:
- A. 原子外层电子被激发 B. 原子外层电子被电离
- C. 原子内层电子被移走 D. 原子中电子自旋-轨道作用很强
- 7、对 Cu (Z=29) 原子, 失去一个 K 壳层电子的原子能量比失去一个价电子 的原子能量差不多大多少倍?

A. 1000000

B. 100

C. 1000

D. 10000

- 8、下述哪一个说法是不正确的?

 - A. 核力具有饱和性 B. 核力与电荷有关

 - C. 核力是短程力 D. 核力是交换力
- 9、C1(Z=17)原子的基态是:

- A. ${}^{2}P_{1/2}$ B. ${}^{3}P_{2}$ C. ${}^{3}P_{1/2}$ D. ${}^{2}P_{3/2}$

- 10、进行卢瑟福理论实验验证时发现小角散射与实验不符,这说明:
 - A. 原子不一定存在核式结构 B. 散射物太厚
 - C. 卢瑟福理论是错误的 D. 小角散射时一次散射理论不成立

得 分	评卷人	复核人

四、计算题(本题 16 分)

- (1) 氢原子基态和第一激发态的电离电势;
- (2) 分别计算氢原子赖曼系、巴尔末系、帕邢线系波长最长的那条谱线波长;
- (3) 对氘原子,其光谱线在相应的氡原子谱线的长波还是短波方向? 试解释;

得 分	评卷人	复核人

五、计算题(本题12分)

钠原子黄光在分辨率高的单色仪下观察是由 5890 Å 和 5896 Å 两条谱线组成。

- (1) 解释产生此种精细谱线的原因:
- (2) 求此双线对应的精细结构能级的裂距。

得 分	评卷人	复核人

七、计算题(本题12分)

选择某种原子 $^3S_1 \rightarrow ^3P_1$ 跃迁波长为 4358 Å 的谱线做塞曼效应实验。

- (1) 在能级分裂图上标出此谱线在磁场中分裂的情况;
- (2) 在垂直和平行于磁场方向观察,分别可看到哪些谱线,它们的偏振性如何?
- (3)分裂的谱线是否等间隔?若有分辨本领 $\lambda/\delta\lambda=10^5$ 的光谱仪,为能分辨上述谱线分裂后的全部谱线,则所加磁场至少应多大?

得 分	评卷人	复核人

六、(本题 12 分)

(1) 铍原子中的一个电子被激发到 3s 轨道,另一个还在 2s 轨道,此时可形成哪些原子状态? (2) 在能级图上画出此种情形下向下面所有可能能级的光谱跃迁。